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We propose and study a model for the equilibrium statistical mechanics of a pressurized semiflexible
polymer ring in two dimensions. The Hamiltonian has a term which couples to the algebraic or signed area of
the ring and a term which accounts for bending �semiflexibility�. The model allows for self-intersections. Using
a combination of Monte Carlo simulations, Flory-type scaling theory, mean-field approximations, and lattice
enumeration techniques, we obtain a phase diagram in which collapsed and inflated phases are separated by a
continuous transition. The scaling properties of the averaged area as a function of the number of units of the
ring are derived. For large pressures, the asymptotic behavior of the area is calculated for both continuum and
lattice versions of the model. For small pressures, the area is obtained through a known mapping onto the
quantum mechanical problem of an electron moving in a magnetic field. The simulation data agree well with
the analytic and mean-field results.
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I. INTRODUCTION

Fluid vesicles obtained via the self-assembly of am-
phiphilic molecules exhibit a variety of shapes in thermal
equilibrium. Such shapes can be understood in terms of the
energy minimizing configurations of a curvature Hamil-
tonian, under the constraints of fixed enclosed volume and
surface area �1–3�. Shape changes arise when solutions of the
Euler-Lagrange equations representing distinct shapes ex-
change stability. However, the nonlinearity of these equa-
tions, if no special symmetries are assumed, necessitates
purely numerical approaches. Further, while the curvature
modulus in bilayer lipid membrane systems is often large, so
that thermal fluctuations about the minimum free energy
structure may be ignored, the more general problem of un-
derstanding the thermodynamics of such shape transitions is
a formidable one �4�.

The two-dimensional version of the vesicle problem is a
polymer ring of fixed contour length, whose enclosed area A
is constrained through a coupling to a pressure difference
term p. Leibler, Singh, and Fisher �LSF� �5� performed a
Monte Carlo and scaling study of two-dimensional vesicles,
modeled as closed, planar, self-avoiding tethered chains, ac-
counting for both pressure and bending rigidity. In this
model, the ring polymer is obtained by connecting the cen-
ters of impenetrable particles of fixed radius with tethers of a
fixed maximum length, while enforcing self-avoidance. LSF
showed the existence of a phase transition at p=0, separating
a branched polymer phase for p�0 from an inflated phase
for p�0. At the transition point, the ring is described by a
self-avoiding polygon. Various fractal and nonfractal shapes
that arise in these models have also been investigated �6,7�.

Analytic studies of this class of models present many dif-
ficulties, arising principally from the self-avoidance con-
straint. Nevertheless, the relatively simple structure of the
LSF model has stimulated a considerable body of work,

largely in exact enumeration studies of lattice versions of the
original continuum model and its variants �8–16�. Most of
these studies have concentrated on the behavior of the sys-
tem in the thermodynamic limit in the region p�0. How-
ever, the p�0 case can exhibit interesting crossover behav-
ior for large but finite systems.

The consequences of relaxing the self-avoidance con-
straint were studied in Refs. �17–19�. In the models studied
in these papers, the ring was allowed to intersect itself, with
the pressure term coupled to the algebraic area �17,18� or to
its square �19�. The particles linked to form the polymer
were coupled through harmonic springs �17,18�, thus allow-
ing for the extensibility of the chain. We shall refer to this
model as the extensible self-intersecting ring �ESIR�. The
ESIR model can be solved exactly. The solution yields col-
lapsed and inflated phases of the ring separated by a continu-
ous phase transition that occurs at a critical value of an ap-
propriately scaled pressure �18�. However, the model has a
major shortcoming in that the inflated phase is an unphysical
one in which the ring expands to an infinite size. In a more
realistic model, such an expansion would be limited by the
finite size of individual link lengths.

The unphysical nature of the inflated phase in the ESIR
model has been addressed in recent work �20�, in which par-
ticles are joined by bonds of fixed length, as opposed to
springs. The Hamiltonian has a term where the pressure
couples to the algebraic area, as in the ESIR model. The
transition survives as a continuous phase transition with
mean-field exponents, separating collapsed and inflated re-
gimes of the ring. We shall refer to this model as the inex-
tensible self-intersecting ring �ISIR�.

The model proposed in this paper incorporates a bending
energy into the ISIR model along standard lines for semiflex-
ible polymers. We retain the coupling of the signed pressure
to the algebraic area noting, as argued in �20�, that this dif-
ference, while vastly increasing the tractability of the prob-
lem, makes little difference to computations within the in-
flated phase.

The model is defined as follows. Consider a closed chain
of N monomers in two dimensions. Let the positions of the
jth particle be denoted by the vector r� j and the corresponding
tangent vectors by t�j =r� j+1−r� j, j=1,2 , . . . ,N. For a closed
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ring, r�N+1=r�1, or equivalently, �it�i=0. The algebraic or
signed area As enclosed by the ring is given by

As =
1

2�
i=1

N

�r�i � r�i+1� · ẑ = �
j=1

N

�
k=1

j−1

�t�k � t�j� · ẑ . �1�

As can be either positive or negative.
Coupling this algebraic area to pressure, we obtain the

energy term,

Hp = − pAs. �2�

Importantly, p→−p is a symmetry of the model, since the
pressure term couples to the signed area. The bending energy
cost can be written down following standard procedures as

Hb = − J�
i=1

N

t̂i · t̂i+1, �3�

where J is the continuum bending rigidity and t̂ is the unit
vector in the direction of t�. The inextensibility condition is
imposed through

�r�i − r�i−1� = �t�i� = a = 1. �4�

Since the tangent vectors have unit norm, we can represent
them as t�i= �cos �i , sin �i�, where �� �0,2��. In terms of
these variables, the partition function is

Z =� �
i

d�i�
j=0

N−1 	�
k=0

j−1

e�p/2�sin��k−�j�
eJ cos��j−�j+1�. �5�

We shall refer to this model as the “continuum model.”
We also study a lattice version of the same problem with

the particles constrained to lie on the vertices of a two-
dimensional square lattice. The model remains essentially the
same except for restrictions on the angles �i. Now �i is only
allowed to take values 0, � /2, �, and 3� /2, such that all the
particles are on the vertices of the square lattice. We will
refer to this version as the “lattice model.” We discuss the
differences and similarities between the two versions.

We use a combination of analytic and numerical methods
to study these models: Flory-type scaling theory for the scal-
ing of the area as a function of pressure, Monte Carlo simu-
lations for different pressures and bending rigidities, mean-
field approaches, and exact enumerations.

In Fig. 1 we show typical configurations obtained from
Monte Carlo simulations of the continuum model in four
limits. These are configuration snapshots across the collapsed
to inflated phase transition, for different values of the bend-
ing rigidity J of the continuum model, as the pressure p is
varied. Figure 1�a� shows the collapsed phase for the case
where the bending energy is zero, while Fig. 1�b� illustrates a
typical ring configuration at an intermediate value of the
bending rigidity, but still within the collapsed regime. In Fig.
1�c�, we show a typical configuration close to the transition
between collapsed and inflated phases. Last, Fig. 1�d� illus-
trates the fully inflated ring.

We summarize our main results below. We show that
there is a continuous phase transition in the scaled pressure p̂
�=Np /4��—bending rigidity �J� phase diagram, which sepa-

rates a collapsed phase in which area	N, from an inflated
phase in which area	N2 �see Fig. 2�. The p→−p symmetry
implies the symmetry of the phase boundary upon reflection
across the p=0 axis, as shown in Fig. 2. The phase boundary
for the continuum model is obtained as p̂c= �I0�J�
− I1�J�� / �I0�J�+ I1�J��, where the I�J�’s are modified Bessel
functions. For the lattice model, the phase boundary is ob-
tained as p̂c=e−J.

These results are obtained by incorporating the effects of
a nonzero J into the known exact solution for the J=0 case,
through a scaling argument. For the collapsed phase, the free
energy for nonzero J is calculated by the same method. In
the inflated regime, we resort to mean-field approximations.
We employ two types of mean-field theories: In the first, the
inextensibility constraint is satisfied exactly but the closure
condition is satisfied only on average. In the second, we
impose the closure condition exactly but satisfy the inexten-

FIG. 1. �Color online� The collapsed to inflated phase transition
as the pressure is increased. The different panels correspond to �a�
J=0, p� pc; �b� J=2, p� pc; �c� J=0, p= pc; and �d� J=0, p� pc.
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FIG. 2. �Color online� The phase boundary between collapsed
and inflated phases for a semiflexible polymer ring as obtained by
two different methods, a scaling analysis based on Flory-type argu-
ments and mean-field theory. Note that the p→−p symmetry of the
model implies the symmetry of the phase boundary upon reflection
across the p=0 axis. Thus, negative and positive values of the
scaled pressure are equivalent, since the pressure term couples to
the signed area and not to the true area.
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sibility constraint only on average. The dependence of the
area on p̂ for p̂→
 is calculated. The behavior near the
transition line is obtained through a Flory-type scaling
theory.

The rest of the paper is organized as follows. Section II
contains the details of the numerical methods used, including
the Monte Carlo and exact enumeration algorithms. In Sec.
III, we discuss a Flory-type scaling theory valid for the semi-
flexible case. Section IV describes mean-field approaches to
this problem: �a� a simple density-matrix-based single-site
mean-field approach, which captures the properties of the
inflated phase to very high accuracy but is inadequate for the
collapsed phase and �b�, a less accurate harmonic spring
mean-field theory, which is capable of describing both col-
lapsed and inflated phases. In Sec. V, we discuss the behavior
around the critical point in greater detail. Section VI contains
results for the asymptotic behavior of the area as well as a
description of the appropriate scaling function for the area in
the lattice case, as a function of N. Section VII contains a
summary and conclusions. In the Appendix we use the anal-
ogy between the extensible polymer and the quantum me-
chanical problem of the motion of an electron in a magnetic
field to reproduce the solution of the problem for J=0 and
p̂� p̂c.

II. NUMERICAL METHOD

In this section, we describe the numerical methods used.
For the continuum version of our model, we use Monte Carlo
simulations �described in Sec. II A� while for the lattice
problem, we use an exact enumeration scheme �described in
Sec. II B�. The analytic results we obtain for our model, de-
scribed in later sections, provide useful benchmarks for the
numerical work.

A. Monte Carlo simulations

The algorithm for the Monte Carlo simulation of the con-
tinuum model consists of two basic moves �21,22� a single
particle flip and a global flip. In the single particle flip, a
particle is picked at random and reflected about the straight
line joining its two neighbors �see Fig. 3�a��. The move is

accepted using the standard Metropolis algorithm. Since the
energy computation involves only nearby sites, the move is
efficient and fast. In the global flip, two particles of the ring
are chosen at random and the section of the ring between
them is reflected about the line joining the two particles �see
Fig. 3�b��. The energy calculation now involves O�N� par-
ticles and is thus computationally expensive. However, the
global move is crucial to the study of the case where J�0,
since single particle moves alone are insufficient for equili-
bration in this case.

In the simulations, one Monte Carlo step is defined as one
global move and N single particle moves made by selecting
at random particles to be updated. This step is then repeated
until the system equilibrates. This algorithm is ergodic within
the initially chosen set of tangent vectors �21�. The initial
configuration was chosen to be a regular N-sided polygon,
but we verified that random configurations also gave the
same results. Thermodynamic quantities are measured from
averages taken over independent configurations in equilib-
rium.

We performed Monte Carlo simulations across a range of
pressures for different values of J and system size. The sys-
tem size varied from N=64 to N=2000. Typically each pa-
rameter value was run for 4�106 Monte Carlo steps. We
waited typically for 106 steps for equilibration, averaging
data over the remaining steps using independent configura-
tions. We verified that changing the interval between two
measurements did not change the results. In all the figures
shown, the error bars on computed quantities are smaller
than the sizes of the symbols used.

B. Exact enumeration

We first describe the algorithm for the case J=0. Consider
a random walk starting from the origin and taking steps in
one of the four possible directions. For each step in the posi-
tive �negative� x direction, we assign a weight e−Py �ePy�,
where y is the ordinate of the walker. Multiplying these
weights, it is easy to check that the weight is ePA for a closed
walk enclosing an area A.

Let TN�x ,y� be the weighted sum of all N-step walks from
�0,0� to �x ,y�. It then obeys the recursion relation,

TN+1�x,y� = e−PyTN�x − 1,y� + ePyTN�x + 1,y� + TN�x,y − 1�

+ TN�x,y + 1� , �6�

with the initial condition

T0�x,y� = �x,0�y,0. �7�

Finally, TN�0,0� gives the partition function of the ring poly-
mer on a lattice.

For the semiflexible case, the recursion relation given
above must be modified, since the ring is no longer a simple
random walk but a walk with a one step memory. We convert
it into a Markov process as follows. Let TN�x ,y ;x� ,y�� be the
sum of weights of all walks reaching �x ,y� in N steps but
having been at �x� ,y�� at the previous step. These TN’s are
now a Markov process and depend only on TN−1’s. The re-
cursion relations are then straightforward to write down.

(a)

(b)

FIG. 3. �Color online� A schematic representation of the Monte
Carlo moves: �a� single flip and �b� global flip.
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Rather than give all the recursion relations, we provide a
representative example

TN+1�x,y ;x − 1,y� = e−Py�TN�x − 1,y ;x − 2,y�

+ e2JTN�x − 1,y ;x,y�

+ eJTN�x − 1,y,x − 1,y + 1�

+ eJTN�x − 1,y ;x − 1,y − 1�� . �8�

Similar recursion relations will hold for TN+1�x ,y ;x+1,y�,
TN+1�x ,y ;x ,y−1�, and TN+1�x ,y ;x ,y+1�.

The partition function for the polymer problem can be
expressed as a sum over areas and bends consistent with a
given value of the area, i.e.,

ZN = TN�0,0� = �
A,B

CN�A,B�epA+JB, �9�

where CN�A ,B� counts the number of closed paths of area A
in a walk of length N which have B bends. We count up to
N=150 for different values of J. The only limiting factor in
going to larger N values is computer memory.

III. FLORY-TYPE SCALING ANALYSIS

Flory-type scaling theory provides a useful tool to capture
the scaling behavior of systems whose free energy reflects a
competition between two or more terms. Such a scaling
theory was proposed for the ISIR model in Ref. �20�. A tran-
sition from a collapsed to an inflated state was predicted to
occur at a critical value of the pressure, whose magnitude
scaled with system size as N−1. We show how these argu-
ments may be extended to the semiflexible case, deriving
expressions for the change in the critical point and scaling as
a function of the bending rigidity.

The free energy consists of three terms describing �i� the
entropy of the ring, �ii� the pressure differential, and �iii�
inextensibility of the bonds. When J=0, these terms were
argued to be R2 /N, −PR2, and R4 / �4N3� for a ring of size R
�20�, where for the second term it was assumed that the area
�A� scales as R2. With semiflexibility, we show that a similar
scaling form holds except for J dependent prefactors. Thus,
the free energy takes the form

F = Fentropic + Fpressure + Finextensibility


4�R2

N
���J� − p̂� +

�J�R4

N3 , �10�

where we have defined p̂=Np /4�, and � and  depend on J.
It is easily seen that a system described by such a Flory

theory undergoes a continuous transition when the R2 /N
term changes sign. This occurs at a critical scaled pressure
p̂c�J� which varies with J as

p̂c�J�
p̂c�0�

=
��J�
��0�

. �11�

When p̂� p̂c�J�, then the area follows random walk sta-
tistics with �A�N. In this regime the R4 /N3 term is not
important. For nonzero values of J, there exists a persistence
length lp, and for length scales much larger than this length,

the problem reduces to that of a freely jointed ring with an
effective number of monomers given by N / lp. Thus, we con-
clude that

�A�J,N, p̂�� =
N

p̂c�J�
f	 p̂

p̂c�J�

, p̂ � p̂c, �12�

where f�x� is a scaling function. The scaling function f�x�
and p̂c can be determined from the solution of the extensible
chain with zero bending rigidity �see Appendix�. This gives

p̂c = 4���J� , �13�

and

f�x� =
1

4�x
−

cot��x�
4

. �14�

An equivalent approach to this transition is obtained by re-
instating factors of the bond length a and kBT in the Flory
estimate above. It is easy to see that the transition occurs
when the “pressure length” �p̂a�−1, measuring the length
scale at which the contribution of the pressure term in the
free energy becomes significant, becomes of order the per-
sistence length lpJa.

Numerical confirmation of Eqs. �12� and �14� is provided
in Fig. 4. The inset shows that the curves for different J
collapse onto a single curve when scaled as in Eq. �12�.

When p̂= p̂c, the scaling is determined by the R4 /N3 term.
Thus, �A�N3/2 /��J�. Thus,

�A�J��
�A�0��

=��0�
�J�

. �15�

To test Eq. �15�, we compare the Flory prediction with the
enumeration results for the area in the lattice model. As can
be seen from Fig. 5, there is good agreement for small values
of J but the data starts to deviate away from the predicted
curve as J increases.
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FIG. 4. �Color online� Area versus pressure curves for three J
values for p̂� p̂c. The points correspond to the continuum case
while the solid curves correspond to the lattice case. The inset
shows the collapse when the curves are scaled as in Eq. �12�. The
f�x� curve in the inset represents the scaling function of Eq. �14�.
The main figure shows data for both N=60 �triangles� and for N
=100 �squares�, while the inset shows only the N=100 data for
clarity.
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When p̂� p̂c�J�, the ring is in an inflated state, with the
area �A�N2. To obtain an accurate description of this re-
gime, we would need to keep higher order terms such as
R6 /N5 and so on. One thus expects that the lattice and the
continuum problems should differ considerably in this re-
gime.

We now derive expressions for ��J� and �J� in both the
continuum and lattice cases. This is done by considering a
semiflexible chain subjected to an external force. We obtain a
perturbative solution for the partition function in the limit of
small forces. From the partition function, we obtain the free
energy of the ring. By comparing this with the form of Eq.
�10�, the values of ��J� and �J� can be obtained.

A. Continuum case

Consider a semiflexible chain of N monomers. When the

chain is pulled by a force f�, the partition function is given by

Z�J, f�,N� =� �
j=1

N

dt̂je
Jt̂j·t̂ j+1ef�·t̂ j . �16�

We work in the limit of small forces, treating the J term
exactly. We consider the f term as a perturbation on the
zeroth order partition function �f =0 in Eq. �16��, given by

Z0�J,N� = �2�I0�J��N, �17�

where I0�J� is the modified Bessel function of the first kind

of order 0. We then expand exp�� j=1
N f� · t̂ j� as a series in f and

average each term with respect to the zeroth order Hamil-
tonian. On computing the averages, the partition function is
obtained as

ln Z�J, f ,N� = ln Z0 + Nb2f2 + Nb4f4 + O�f6� , �18�

where the coefficients b2 and b4 are given by

b2 =
I0 + I1

4�I0 − I1�
, �19�

b4 =
b2

2

4
� 2I2

I0 − I2
−

I0 + 3I1

I0 − I1
� . �20�

The In’s are modified Bessel functions of the first kind. Their
J dependence has been suppressed in the equation above.

The mean end-to-end distance in the limit of small force
is obtained from R� ln Z /�f as follows:

R

N
= 2b2f + 4b4f3 + O�f5� . �21�

Solving for f from Eq. �21�, we obtain

f =
1

2b2

R

N
−

b4

4b2
4	R

N

3

+ O�	R

N

5� . �22�

The Flory free energy F�R�=−ln Z+ fR, then reduces to

F�R� = − ln Z0 +
1

4b2

R2

N
−

b4

16b2
4

R4

N3 − pR2. �23�

Comparing with Eq. �10�, the factors ��J� and �J� are ob-
tained as

��J� =
1

4�

I0 − I1

I0 + I1
→

J→
 1

16�J
, �24�

�J� = 4�2��J�2� I0 + 3I1

I0 − I1
−

2I2

I0 − I2
� →

J→
 7

64J
. �25�

B. Lattice case

For a lattice polygon, where each individual step can
point only in four directions, we solve the problem of a semi-
flexible chain subject to an external force using the exact 4
�4 transfer matrix. The transfer matrix in this case is given
by

T =�
eJ+f ef/2 e−J ef/2

ef/2 eJ e−f/2 e−J

e−J e−f/2 eJ−f e−f/2

ef/2 e−J e−f/2 eJ
� . �26�

We determine the largest eigenvalue up to order f4, and
hence calculate the partition function as follows:

ln Z�J, f ,N� = N�ln�2 + e−J + eJ� +
eJ

4
f2 +

1

192
�eJ − 3e3J�f4

+ O�f6�� . �27�

We then follow the same procedure as for the continuum
case, finding R /N in terms of f , inverting this equation to
find f , and finally, using this expression to compute the free
energy. We thus obtain

F�R� = e−JR2

N
+ � 1

12
e−3J�3e2J − 1��R4

N3 . �28�

The expressions for ��J� and �J� are then
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FIG. 5. �Color online� Comparison of the area ratio
�A�J�� / �A�0�� at the critical point with the scaling prediction �see
Eqs. �15�� for the lattice �Eq. �30�� and continuum �Eq. �25�� mod-
els. The scaling prediction is satisfactory for small J but deviates as
J increases. For the continuum simulation we used N=150, while
the points for the lattice calculation were obtained through a finite-
size scaling of the values obtained from N=80,90, . . . ,150.
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��J� =
1

4�
e−J, �29�

�J� =
1

12
e−3J�3e2J − 1� . �30�

IV. MEAN-FIELD THEORY

In this section we present mean-field theories to calculate
the dependence of area on pressure and bending rigidity. In
Sec. IV A, we address the ISIR model �J=0�. The mean-field
theory presented in �20� performs poorly with respect to the
Monte Carlo data when p̂� p̂c. Here, we present an im-
proved variational mean field which reproduces the behavior
of the area above the transition very accurately. It also yields
the correct asymptotic behavior for the area in the limit of
high pressures. In this approach, the constraint of fixed link
length is treated exactly while the closure constraint is satis-
fied in a mean-field sense. However, such a mean-field
theory fails to describe the collapsed phase, also yielding
incorrect results for the case of nonzero J.

In Sec. IV B, we generalize an earlier mean-field theory
for the freely jointed chain to include semiflexibility, impos-
ing the constraint of fixed bond length via a Lagrange mul-
tiplier �20�. The closure condition is imposed exactly. We
thus derive expressions for the average area of the ring for all
pressures and bending rigidity.

A. Density matrix mean field for flexible polymers

In variational theory, a trial density matrix � is chosen to
approximate the actual density matrix �23�. The variational
parameters are determined by minimizing the variational free
energy F� with respect to the parameters. The simplest mean-
field theories assume a trial density matrix that is a product
of independent single particle matrices, i.e.,

� = �
j

� j , �31�

where � j is the single particle density matrix of particle j.
The variational mean-field free energy is

F� = �H�� + T�
j

Tr � j ln � j . �32�

The variational form for the density matrix should satisfy the
constraint Tr � j =1.

We choose the single particle density matrix based on the
high pressure limit. In this limit, the ground state of our
Hamiltonian is a regular N-gon, where the angle of the jth
tangent vector is � j =2�j /N. The single particle density ma-
trix has a delta function peak at this value. At intermediate
pressures, we therefore take the form of the density matrix to
be a Gaussian of width � �the variational parameter� centered
about 2�j /N as follows:

� j�� j� =
1

�2�� erf��/�2��
exp�− 	� j −

2�j

N

2

2�2 � , �33�

where the normalization ensures that Tr � j =1 and erf�x� is
the error function defined as

erf�x� =
2

��
�

0

x

e−t2dt . �34�

Using this form of the density matrix, we obtain

F�

N
= −

p

4
cot	�

N

K���2 + J cos	2�

N

K���2 −

1

2

+
�� exp��2/�2�2��
�2� erf��/�2��

− ln	�2�� erf� �

�2�
�
 ,

�35�

where

K��� =
erf��� − i�2�/�2�� + erf��� + i�2�/�2��

2 erf��/�2��e�2/2
. �36�

When N�1, the pressure and bending terms in Eq. �35� can
be combined, and the problem is equivalent to one of a flex-
ible polymer �J=0� with an effective pressure p̂eff= p̂+J.

The variational parameter � is chosen to be the �* that
minimizes F� in Eq. �35�. This is done numerically. The av-
erage area, equal to −�F� /�p, is then given by

�A� =
N

4
cot	�

N

K2��*� →

N→
 N2

4�
K2��*� . �37�

We now derive the asymptotic behavior of area in the
limit of high pressures. We work in the limit when N is large.
For large pressures, we expect that �* tends to zero. In this
limit

K��� � e−�2/2, � → 0, �38�

and the variational free energy is then given by

F���� = N�− �p̂ + J�e−�2
− ln��2��� −

1

2
� , �39�

where p̂=Np / �4��. Solving dF� /d�*=0, it is straightfor-
ward to obtain

�* =
1

�2p̂
+

1 − 2J

4�2p̂3/2 , p̂ → 
 . �40�

The area then reduces to

�A�
N2/4�

→ 1 −
1

2p̂
+

4J − 1

8p̂2 , p̂ → 
 . �41�

For flexible polymers �J=0�, this mean-field theory repro-
duces the p̂� p̂c behavior very accurately. It also obtains the
correct asymptotic behavior. In Fig. 6, we compare the
Monte Carlo data for J=0 with the results of the above
mean-field theory and contrast it with the mean-field theory
of Ref. �20�.
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The density matrix mean field however, fails to correctly
obtain the behavior for nonzero values of the bending rigid-
ity. It predicts a first order transition for J�1, in disagree-
ment with results from scaling theory. We compare the re-
sults of this mean field with the Monte Carlo data in Fig. 7
for a system with J=1. This mean-field approach then pre-
dicts a transition at p̂=0. The discrepancy between the two
curves increases for larger values of J. We now describe an
alternative mean-field approach to this problem which ex-
tends the harmonic spring-based mean-field theory of Ref.
�20� to nonzero values of J.

B. Harmonic spring mean field for semiflexible polymers

We follow the approach of Ref. �18� wherein the rigid
links between particles are replaced by extensible springs.
The spring constant � of the springs is identified with a
Lagrange multiplier, chosen so that the mean length of a
spring equals unity �20�.

Consider a partition function for N particles given by

Z =� dt�1 ¯ dt�N exp� p

2 �
k�j

t�k � t�j + J�
j

t̂ j · t̂ j+1 − ��
j

t�j
2� .

�42�

Note that while pressure couples to t�, the bending rigidity
couples to the unit vectors t̂. We make the approximation of
replacing t̂ by t�. This makes the problem analytically trac-
table.

Expanding the tangent vectors in Fourier space as

t̂ j
x =� 2

N
�

k

�Ak cos�jk� + Bk sin�jk�� ,

t̂ j
y =� 2

N
�

k

�Ak� cos�jk� + Bk� sin�jk�� , �43�

where k=2�l /N, l=1,2 , . . . ,N. The partition function then
reduces to

Z = �
k
� dAkdAk�dBkdBk�e

−��−J cos k��Ak
2+Bk

2+Ak�
2+Bk�

2�

�e�p/k��BkAk�−AkBk��. �44�

By completing the squares, this integral can be written as a
Gaussian integral and hence can be calculated exactly. This
gives

Z = �
k

1

� − J cos k
�1 −

p2

4k2�� − J cos k�2�2

. �45�

The parameter �* is determined by equating the mean square
link length to one, i.e.,

−
1

N

� ln Z
��

= 1. �46�

This gives

N = �
l=1

N
1

�* − J cos	2�l

N

�1 +

2p̂2

l2��* − J cos	2�l

N

�2

− p̂2� ,

�47�

where p̂= pN /4�.
When J=0, the first factor in Eq. �47� becomes indepen-

dent of l, and then the resultant expression can be evaluated
exactly. Hence, an analytic expression for �* can be obtained
in this case �20�. For J�0, this is no longer possible, and for
finite system sizes the resultant equation must be solved nu-
merically. When N�1, it is still possible to extract the be-
havior of the system analytically.

We now determine the phase boundary from Eq. �47�.
We will consider the limit N�1. First, note that �*

−J cos�2�l /N��0 for all l. For positive �*, this gives the
condition that �*�J. Second, consider the term in the de-
nominator for l=1. It is ��*−J�2− p̂2. If we assume that �* is
continuous in p̂, we have the second constraint that �*�J
+ p̂.
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FIG. 6. �Color online� Comparison of Monte Carlo data with the
two mean-field results for the flexible �J=0� case, where mean-field
A presents the results of the density-matrix approach and mean-field
B that of the harmonic springs approach. The density-matrix-based
mean-field approach provides an accurate description of the area for
p̂� p̂c.
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FIG. 7. �Color online� Comparison of Monte Carlo data with the
two mean-field approaches for the case J=1, where mean-field A
presents the results of the density-matrix approach and mean-field B
that of the harmonic springs approach.
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Setting x= l
N and converting the first sum in Eq. �47� to an

integral, the equation for �* reduces to

1 =
1

��*2 − J2
−

1

N��* − J�
+

2

N��* − J�
�
k=1


 	 p̂

�* − J

2k 1

2k − 1

+ O	 1

N2
 . �48�

The sum in Eq. �48� is convergent if the ratio p̂ / ��*−J�
�1. In this case, we keep only the first term on the right-
hand side of Eq. �48�. This gives

�* = �1 + J2, for p̂ � p̂c. �49�

The critical pressure is obtained when the ratio p̂ / ��*

−J� becomes equal to 1, i.e.,

p̂c�J� = �* − J = �1 + J2 − J . �50�

For large values of J, this goes as p̂c�J�1 /2J, which differs
by a factor of 2 from the answer obtained by scaling argu-
ments �see Eq. �24��.

We shall now estimate �* in the different scaling regimes.
We assume that �* is a nondecreasing function of p̂ �as in
J=0�. Then, since we have the constraint of �*� p̂+J, the
ratio p̂ / ��*−J� must continue to remain at 1 for p̂� p̂c. Thus,
above the critical point, we obtain

�* = p̂ + J for p̂ � p̂c. �51�

However, a simple substitution of Eq. �51� in Eq. �47� for
p̂� p̂c does not satisfy Eq. �47�. We therefore need to calcu-
late the correction term arising from large but finite N. We
start by considering Eq. �47�. The first term can be summed
exactly, giving

N	1 −
1

��2 − J2
 = �
l=1

N
1

� − J cos	2�l

N



�
2p̂2

l2�� − J cos	2�l

N

�2

− p̂2

. �52�

We calculate the finite-size corrections to �* as follows. Let

�
p̂�p̂c

* = p̂ + J − � . �53�

When �→0, the main contribution to the left-hand side of
Eq. �52� comes from the l=1 term. The contribution from the
other l is convergent as �→0. Expanding the right-hand side
as a series in �, we obtain

−
1

�
= N�1 −

1

�p̂2 + 2p̂J
−

��p̂ + J�
�p̂2 + 2p̂J�3/2� . �54�

The � independent term in the right-hand side of Eq. �54� is
nonzero for p̂� p̂c and is equal to zero for p̂= p̂c. Thus, when
p̂� p̂c, we keep only the first term in the right side, while at
p̂= p̂c, we need to keep the second term too. Solving for �,
we obtain

� = �
1

�N

1

�1 + J2�1/4 , p̂ = p̂c,

1

N

�p̂2 + 2p̂J

�p̂2 + 2p̂J − 1
, p̂ � p̂c.

�55�

We are now in a position to calculate the mean area �A�
from � ln Z

�p . This gives

�A� =
Np̂

2�
�
l=1

N
1

l2	�* − J cos�2�l

N
�
2

− p̂2

. �56�

The numerical values obtained for � are then substituted in
this equation to get the corresponding value of the area. We
can, however, analytically determine the scaling behavior of
the area in the limit of large system sizes from the values of
� calculated above.

For p̂� p̂c, we have

�A� �
Np̂

2�
�
l=1

N
1

l2��1 + J2 − J cos�2�l/N��2 − p̂2
. �57�

At the critical point, we obtain, from Eqs. �54� and �56�,

�A� = N3/2 �1 + J2�1/4

4�
, p̂ = p̂c. �58�

Similarly, for pressures greater than the critical pressure, we
obtain, from Eqs. �51� and �56�,

�A�
N2/4�

= 1 −
1

�p̂2 + 2p̂J
→

p̂→


1 −
1

p̂
+

J

2p̂2 , p̂ � p̂c.

�59�

This mean-field theory reproduces the qualitative behav-
ior of the simulation data correctly. It predicts a continuous
transition for all J, unlike the density-matrix-field theory.
However, there is a quantitative disagreement with the data.
This can be seen by comparing the results of this mean-field
theory with the simulation data in both the flexible �Fig. 6�
and semiflexible �Fig. 7� polymer cases.

V. SCALING AND CRITICAL EXPONENTS

The order parameter that describes the collapsed to in-
flated phase transition is the ratio of the area to the maximum
area. When N�1, the ratio is zero below the transition and
nonzero above it. The behavior near the transition line can be
described by the scaling form

�A�
Amax

� N−�g��p̂ − p̂c�N�� , �60�

where �,  are exponents and g�x� is a scaling function.
When x→0, then g�x�→constant. When x→
, then g�x�
x. When x→−
, then g�x�1 /x �see Eqs. �12� and �14��.
This immediately implies that

��1 + � = 1. �61�
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To obtain the one independent exponent, we resort to the
scaling theory �see Sec. III�. At p̂c, �A� /Amax1 /�N. At the
critical point, the area scales as N3/2. Combining with Eq.
�61�, we obtain �=1 /2 and =1. These exponents are inde-
pendent of J.

In Fig. 8, we show scaling plots when area is scaled as in
Eq. �60� with � and  as above for the cases J=0 and J
=0.5. The excellent collapse shows that the Flory-type scal-
ing theory gives the correct exponents.

We now look at the fluctuations. Consider the compress-
ibility � defined as

� =
1

Amax

��A�
�p

. �62�

When p̂� p̂c, � can be calculated from Eqs. �12� and �14� to
be

� = −
1

p̂2 +
�2

p̂c
2 sin2��p̂/p̂c�

, p̂ � p̂c. �63�

Thus, � diverges as �p̂c− p̂�−2 below the transition point. The
behavior near the transition point is described by the scaling
form

� � N��h��p̂ − p̂c�N�� , �64�

where h�x� is a scaling function and �=1 /2. When x→0,
then h�x�→constant. When �x � �1, then h�x�x−�. Com-
parison with Eq. �63� gives �=2.

In Fig. 9, we plot the compressibility scaled as in Eq. �64�
for two different values of J. A good collapse is obtained
again showing that the Flory-type scaling theory gives the
correct exponents. Similar, but noisier data can be obtained
for the continuum model. We thus conclude that the intro-
duction of semiflexibility does not affect any of the expo-
nents describing the transition.

VI. LATTICE PROBLEM

In this section, we present some additional enumeration
results for the lattice problem. Consider the scaling theory
presented in Sec. III. The inextensibility of the polymer was

captured by the R4 /N3 term for a polymer of extent R. This
was obtained from a calculation based on the extension of a
polymer under a force. Here we present numerical evidence
supporting this.

Let PN�A� be the probability �at P=0� that a walk of
length N encloses an area A. In the Appendix, we obtain �see
Eq. �A4��

PN�A� =
1

N
I	A

N

, A,N → 
 ,

A

N
fixed, �65�

where the scaling function I�x� is given by

I�x� = � sech2�2�x� . �66�

We consider the corrections to the scaling form in Eq.
�65�. Let

EN�A� =
NPN�A�
I�A/N�

. �67�

Scaling theory predicts that EN�A� should be a function of
one variable A2 /N3. This is verified in Fig. 10 where
ln EN�A� is plotted against A2 /N3 for a range of system sizes.

We also study the behavior of area when p̂ is very large.
When p̂�1, the behavior is seen to differ from the con-
tinuum version of the problem. It can be shown to be �24�
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FIG. 8. �Color online� Area collapse for flexible and semiflex-
ible polymers around the critical point. This verifies Eq. �60�. The
data is for N=80,100,120,140,150 for the lattice problem.
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1 −
�A�
Amax


1

p̂2 , p̂ → 
 . �68�

This should be contrasted with the continuum case which
varied as 1 / p̂. In Fig. 11, we show numerical confirmation of
the prediction of Eq. �68�.

VII. CONCLUSIONS

In this paper, we have proposed and studied lattice and
continuum models for self-intersecting pressurized semiflex-
ible polymers. Our work generalizes results of Ref. �20� to
include a bending rigidity. A simple variational mean-field
approach provides very accurate fits to the Monte Carlo data
for this problem in the absence of semiflexibility. The mean-
field approach for J=0 �17,18,20� was generalized to the
semiflexible case. The phase boundary between collapsed
and inflated phases as well as expressions for the area as a
function of p and J in the different phases were obtained
analytically.

We have shown that the essence of the physics is captured
through simple Flory approximations. The scaling predic-
tions of the Flory theory were verified numerically for both
the lattice and continuum cases.

We have also investigated the behavior of the system in
the extreme limits of a fully pressurized polymer ring and a
collapsed configuration. For the fully pressurized ring, we
deduce the leading order asymptotic behavior of the area in
both the continuum and lattice cases. The collapsed phase
was studied using the mapping to the quantum mechanical
problem of an electron confined to two dimensions and
placed in a transverse magnetic field �25�. The analytic re-
sults thus obtained fit the data accurately.

The usefulness of these results for more realistic systems
lies in the fact that both the restriction to the signed area as
well as allowing for self-intersections at no energy cost are
irrelevant in the large p limit. The results obtained at large p
should therefore apply both qualitatively and quantitatively
to the more realistic case of a pressurized self-avoiding poly-
mer, where the pressure term couples to the true physical
area and not to the signed area. This is the LSF model �5�.
The approach presented here is thus also useful in under-

standing the behavior of a larger class of models, some of
which are more physical in character, but which lack the
analytic tractability of the model proposed and studied here.
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APPENDIX: ANALYTIC ANSWER IN THE SMALL
PRESSURE REGIME

In this appendix, for the sake of completeness, we repro-
duce the exact result for the J=0 case. It is known that the
problem of self-intersecting polymers in two dimensions
with no bending rigidity �J=0� is analogous to the quantum
mechanical problem of an electron moving in a magnetic
field applied transverse to the plane of motion �25�. Using
this analogy, analytic expressions for the partition function Z
and CN�A�, the number of closed walks of area A can be
obtained.

For an electron of charge e and mass m in a constant
external magnetic field B, in the z direction, in the case when
the electron returns to the origin, the kernel can be written as
�25�

K�0,0;t,0� = 	 m

2�i�t

	 �t/2

sin �t/2
 , �A1�

where �=eB /mc. It picks up a flux �, proportional to the
algebraic area A, and given by

� =
eBA

�c
. �A2�

To map the results of the quantum problem onto the poly-
mer problem, we send t→−it, identify �

2m = 1
4 , and set ieB

�c
= p, obtaining

Z =
4N

4�

p

sin
pN

4

. �A3�

CN�A� is now obtained from the partition function by per-
forming the inverse Laplace transform with respect to p. This
gives

CN�A� =
4N+1

2N2 sech2 2�A

N
, �A4�

and

�A� =
1

p
−

N

4
cot	Np

4

 . �A5�

The free energy will have a singularity at p=4� /N. Be-
low this p, the expressions are valid for both the continuum
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case and the lattice. Exactly the same expression has been
obtained by using the harmonic spring approximation �17�.
The expression for area matches both the simulation and lat-
tice data quite closely for low pressures, as can be seen from
Fig. 4.

Moreover, if we recall the Flory prediction that by rescal-
ing area and pressure by p̂c�J�, we can obtain the results for
nonzero values of the bending rigidity from the answer of the
problem with J=0, we see that the above analysis also pre-
dicts the area expression for nonzero values of J.
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